weak log-majorization inequalities of singular values between normal matrices and their absolute values

Authors

d. chen

y. zhang

abstract

‎this paper presents two main results that the singular values of the hadamard product of normal matrices $a_i$ are weakly log-majorized by the singular values of the hadamard product of $|a_{i}|$ and the singular values of the sum of normal matrices $a_i$ are weakly log-majorized by the singular values of the sum of $|a_{i}|$‎. ‎some applications to these inequalities are also given‎. ‎in addition‎, ‎several related and new inequalities are obtained‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Weak log-majorization inequalities of singular values between normal matrices and their absolute values

‎This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$‎. ‎Some applications to these inequalities are also given‎. ‎In addi...

full text

Singular values of convex functions of matrices

‎Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $‎sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $‎sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$  are nonzero matrices and each $X_{i}$ is‎ ‎positive semidefinite‎. ‎It is shown that if $f$ is a nonnegative increasing ‎convex function on $left[ 0,infty right) $ satisfying $fleft( 0right)‎ ‎=0 $‎, ‎then  $$‎2s_{j}left( fleft( fra...

full text

Inequalities for Singular Values of Positive Semidefinite Block Matrices

In this paper, we first give a lower and upper bounds for singular values of a 2×2 positive semidefinite block matrices. Then, we give some weakly majorization inequalities of singular values positive semidefinite block matrices. Also, we present inequalities involving the direct sum and sum of positive semidefinite matrices.

full text

Accurate Singular Values of Bidiagonal Matrices

2 has nonzero entries only on its diagonal and first superdiagonal ) Compute orthogonal matrices P and Q such that Σ = P BQ is diagonal and nonnegat i 2 2 2 T 2 ive. The diagonal entries σ of Σ are the singular values of A . We will take them to be sorted in decreasing order: σ ≥ σ . The columns of Q= Q Q are the right singular vec i i + 1 1 2 t 1 2 ors, and the columns of P= P P are the left s...

full text

On the singular values of random matrices

We present an approach that allows one to bound the largest and smallest singular values of an N × n random matrix with iid rows, distributed according to a measure on R that is supported in a relatively small ball and linear functionals are uniformly bounded in Lp for some p > 8, in a quantitative (non-asymptotic) fashion. Among the outcomes of this approach are optimal estimates of 1±c √ n/N ...

full text

On structured singular values of reciprocal matrices

Computing the structured singular value (or ) is a bottleneck of the robustness analysis and synthesis of control systems. In this paper, it is shown that is identical to the maximum singular value for an important class of matrices called reciprocal, which re ects the intrinsic symmetry of physical world.

full text

My Resources

Save resource for easier access later


Journal title:
bulletin of the iranian mathematical society

Publisher: iranian mathematical society (ims)

ISSN 1017-060X

volume 42

issue 1 2016

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023